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Abstract: We investigated the elementary properties the embodied system should have to be able to spontaneously build and evolve 
subjective and functional representation of the environment. We show that embodied integration of perception with bodily actions 
can emerge from a rather simple basic setting of (i) existence of a set of bodily actions and (ii) ability to randomly chose actions and 
execute them with variable probabilities. In simulations, agents were able to successfully discriminate between beneficial and 
harmful external objects. Even more interestingly, agents who evolve in the mixed environment, with both food and poison, became 
much more efficient and lived longer compared to agents that reside in the environment without harmful influences. Finally, we 
shortly elaborated on possible application in medicine. 
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1. INTRODUCTION 

 
A concept of embodied cognition postulates that properties of an agent's cognition do not solely depends on 

agent's brain but are also deeply interconnected with properties of his body. Arguments in favor of embodied cognition 
in humans are overwhelming [1] [2] [3]. However, in this article we are interested in the minimal model of embodied 
perception. Such problem gained significant theoretical treatment, mostly in dealing with the origin of life question [4] 
[5] [6] [7]. Our goal here is not so ambitious. Instead, we intent to take only visual perception and to investigate what 
are the elementary properties the system should have to be able to spontaneously build and evolve subjective and 
functional representation of environment. Here, by ”functional” we mean any traits of agent's organization that can 
increase his survival rate. To investigate these basic properties of embodied cognition we will use a minimal model 
without relying on complexities of brain-imitating approaches. Also, we will use vision as an minimal example since it 
is the easiest concept-building process to demonstrate. 

Our aim is to show that embodied integration of perception with bodily actions can emerge from a rather 
simple basic setting of 1) existence of a set of bodily actions and 2) ability to randomly chose actions and execute them 
with variable probabilities. We will show that during evolution agents favor development of internal functional 
structures organized to acquire information, analyze them and make decisions based on performed analysis. Our 
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findings are in line with the sensorimotor contingency theory which postulates that vision is a mode of exploration of 
the world that is mediated by perceiver’s subjective rules integrated with various motor actions [8]. 

In our previous work we demonstrated that evolvable agents, even without provided objective metrics 
according to which elements of environment should be compared and grouped, can spontaneously build subjective data 
models [9]. In that work agents started with no executable functional structures nor with the inherent ability to 
recognize other elements in their environment, like in this article. However, their internal structure relied on building 
internal decision trees. In this work we are taking a step back to investigate minimal necessary architecture of agents so 
they could spontaneously develop subjective models of environment and refine them based on their own empirical 
evidences. With that we can test the entire possible state-space of developing subjective data-models and thus open 
possibility for further systemic investigation of evolvability in more complex settings. 
  

 

2. MODEL DESCRIPTION 

 

As a modeling framework we will use agent-based approach since it offers ability to construct bottom-up 
systems where only elementary boundaries are set [10]. In our model, the environment is two-dimensional grid 
populated by agents and resources (Figure 1). Resources store certain amount of energy and at the beginning of each 
simulation they are randomly distributed within the grid. 

 

 

 

Figure 1. Snapshot of the running simulation. Left part is the simulation grid where agent is blue rectangle, 
while resources are green. Right part of the simulation screen shows agent's current location, energy level, score, known 

resources (resources that agent discovered so far) and what will be his next action. Gray circle shows agent's 
perspective. Here he discovered three resources, but since he is currently eating one of them, only two remaining ones 

are visible. 
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Since the influence of direct competition on the evolutionary dynamic and on the patterns of adaptation is 
highly nonlinear and depends on a large number of factors [11] [12] we deliberately excluded possibility of direct 
competition. Therefore, we run each simulation with a single agent randomly placed within the grid. To account for 
random noise effects, each data point for each value of tested simulation parameters is obtained as an average of 10.000 
repeated simulations. For the overview of simulation parameters see Table 1. 

 

Table 1. Simulation parameters 

 

Name Value
Grid width 100 
Grid height 100 

Number of resources 50 
Energy stored in each resource 5
Cost of performing any action 1

Number of repeated simulations 10.000 
Initial agent’s energy 30 

Extent of tested movement speeds 1-30 
Extent of tested sense ranges 1-30 

 

At the beginning, agents do not know what should they seek in the environment nor how they should act. They 
only have a set of embodied actions (Table 2). Agents start with a given amount of energy which they spend by 
performing actions. If an agents energy reaches 0, the simulation ends. At each time step agents try to execute one 
action. Probabilities of executions of actions can be: 0.1, 0.25, 0.5, 0.75 and 1. At each time step an agent generate 
random number and determine whether certain action can be executed or not. If in a time steps an action is skipped, 
then the next available action goes through the same procedure. In short, agent's strategy is defined via action-
probability pairing. 

 

Table 2. Embodied actions that an agent can perform 

 

Action name Description
Explore Move to a random location on the map 
Sense Perceive the location of nearby resources 
Sense poison Check if nearby resources are poisonous 
Move to resource Move towards the closest visible resource 
Eat Eat anything that is on the current location 

 

In the model, explicitly defined fitness function does not exist. Therefore, agents are free to test any individual 
strategy within the boundaries of embodiment. To agents the only way to extend their survival is to make sure that their 
energy level is above 0. Agents can do it by consuming resources and thus increasing their own energy level. The 
simulation ends if the agents maximum life duration is reached, which is set at 301 time steps. 

In summary, each agent has multiple parameters that determine its success: (i) Movement speed which 
determines what distance can agent move per 1 point of energy, (ii) Sense range which determines how far can an agent 
see while doing the sense action, (iii) Energy level which specifies the agent's current energy and (iv) Strategy which 
specifies the probabilities that a specific action will be skipped. 

To identify statistical outliers, for each set of obtained results we calculated 2T  distance which is the square of 

Mahalanobis distance )()(= 1 YYSYYd i
T

ii   , where iY  is an object vector of tested variables (move speed and 
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sense range) for each simulated case, Y  is corresponding arithmetic mean vector and S  is sample covariance matrix. 

Upper control limit ( UCL ) is calculated as )2/)1(,2/,()/)1(( 2  pnpnnUCL  , where n  is the 

sample size, p  is the number of variables,   is the level of significance and )2/)1(,2/,(  pnp  followed a 

beta distribution [13]. 

To asses relative importance  of the speed of movement and sense range on agent's survival time, we 

calculated their importance index using method described in [14]. In brief, let denote predictive model by f  and if 1x  

and 2x  are move speed and sense range, then let ),( 21 xxfy  . The expected value of y , )(yE , is defined by 

integrating y  with respect to the joint distribution of 1x  and 2x . Also, the variance of y , )(yVar , is defined by 

integrating 2))(( yEy   with respect to the joint distribution of 1x  and 2x . Then the impact of the factor jx  on the 

effect y  can be described by ))|(( jxyEVar . From that we can derive the Importance index as the ratio 

)(/))|(( yVarxyEVarI ji   which gives a measure of the sensitivity of y  to the factor jx  that reflects the 

relative contribution of single factor alone, not in combination with other factor. 

 

 

3.  EMBODIMENT AND EMERGENCE OF SUBJECTIVE DATA MODELS 

 

First, we compared success of “normal” agents with blind agents whose sense function is impaired so they can 
perform sensing but cannot identify resources.  As expected, there is a huge difference in average life duration between 
blind and non-blind agents (Figure 2). For blind agents, Figire 2a  imply that the longest living agents are those with the 
minimal spatial range of sensing environment. Although the difference between life spans in this group of agents is 

small, we tested it by calculating 2T  distance. It showed that this group of agents is indeed a proper outlier cluster, 

located above the UCL . The strategy of survival they applied is quite interesting. As explained in the model 
description, performing each action cost fixed amount of energy. Since they were not able to recognize food source they 
adopted strategy we called blind foraging. In blind foraging agents completely abandoned attempts to sense anything in 
their environment because it will cost them energy and reduce their life span. Instead, they use all the available energy 
to randomly move and blindly try to eat something. By using such strategy this cluster of outliers even managed to 
reach average lifespan equivalent of agents with sense range = 6. 

For agents that made correct identification of resources, to analyze relative importance of move speed and 
sense range as determinants of their average life span we applied recursive partitioning method. In short, we created a 
decision tree to classify pairs of agent's properties that enables his longest survival. The split of nodes is based on the 
largest logworth: 
 

det)(log10  pLogWorth , 

 
where det is the value of the determinant (move speed and sense range) while p  is calculated using Monte Carlo 

calibration method [15]. To determine number of recursions we calculated 2R  value after each split. 2R  reaches 
maximum of 0.86 after three splits. However, since further splits only partitioned move speed, here we opted to analyze 
only 2-step iteration with R2=0.8 (Figure 3). General trend is expected: coupling high movement rate with increased 
distance of vision lead to higher survival rate (Figure 2b and Figure 3). However, somewhat unexpectedly the Pearson 
correlation coefficient show that relative influence of the  movement speed on the average life duration of agents is 
much higher than the sense range (0.76 and 0.38 respectively). 
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Figure 2. Contour plot of distribution average life duration of agents. a) Case for agents that are unable to 
properly identify food source. b) Agents that properly identified food source. 

 

 
 

Figure 3. Partition for average life duration: Each black point represents average life duration of 10.000 agents after 
performed max. 300 time steps. For each partitioned subgroup we calculated mean of these data points so the subgroup 
of agents where move speed < 22 and any value of sense range is composed of 70 data points (=700.000 agents) and the 

average life duration of all of them is 44.9. Subgroup move speed >= 22 and sense range < 10 consists of 9 cases 
(=90.000 agents) with total average life duration =57.2, while move speed >= 22 and sense range >= 10 subgroup is 

composed of 21 cases (210.000 agents) with average life duration =167.4. 
 
To test that further, we trained a simple fully connected neural network with one layer (Figure 4a), using tanh 

activation function. Tanh function, )1/()1( 22  xx eeTanh , is the centered and scaled version of the logistic 

function that normalize all input values to the range [-1,1]. For validation we used Holdback method (with proportion 
0.333) where the original data are randomly divided into the training and validation sets. Obtained R2=0.98 for training 
data and R2=0.97 for validation data, as well as comparing measured and predicted life duration of agents (Figure 4b),  
signify that the model is predicting very well on both data sets. Therefore we used it as a starting point to get more 
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general understanding of the relative importance of speed of movement and sense range on life duration of agents. First, 

we calculated the importance index ( iI ) to precisely measure the importance of speed and range in a way that is 

independent of the model type and fitting method (see methods for details). For the move speed Ii = 0.7 while for sense 
range Ii = 0.14 which basically confirms what correlation coefficient indicated: the move speed is significantly more 
important for agent's survival than its sense range. Looking at the slopes of the mean response of the agent's survival 
value (Figure 5a) and cross-section profile of the modeled response surface (Figure 6a) further support that conclusion. 
Distribution histogram under the added noise (Figure 5a) shows that the speed of movement is not only more important 
but that it also influence life duration over the much broader set of parameter values. 
 

 
 

Figure 4. Neural network model of agent's behavior. a) diagram of the applied fully connected neural network. b) Plots 
of the actual versus predicted average life duration. Left plot shows model fit using training data set, while the right plot 

shows fit for validation data set. 
 

 
 

Figure 5. Mean response of the average life duration across a uniform distribution of factors: move speed and sense 
range. The plots are created by fixing one of the factors and then varying other factor by drawing 5000 Monte Carlo 

samples from a uniform distribution defined by the minimum and maximum values of the varying factor. For example, 



 

 

2-136 

 

 
11th International Scientific Conference 

“Science and Higher Education in Function of Sustainable Development” 
24 – 25 May 2019, Mećavnik – Drvengrad, Užice, Serbia 

upper and lower left plots show how the average life duration changes by going across move speed while the sense 
range is fixed. Similarly, both plots on the right side show reverse situation: fixed move speed and varying sense range. 
Histogram to the right of each mean response plot shows how distribution of average life duration would change under 
added normally distributed random noise (mean=14.5, standard deviation=5.4) over 5000 iterations. Two scenarios are 

shown: a) without and b) with  presence of poisonous resources. 
 

The only outliers identified by calculating 2T  distance are agents where the minimal sense range (=1) is 
combined with high speed of movement (>22). In these cases average life duration unexpectedly decreases. Most 
probable explanation is that in these cases narrow vision coupled with very high mobility leads to nonproportionally 
high waste of energy spent on fast random movement. 
 

 

4.  PERCEPTUAL DISCRIMINATION OF ENVIRONMENT 

 

In nature, living organisms evolved to successfully navigate highly multidimensional space of both beneficial 
and harmful environmental factors. To test whether agents in our simple settings are able to develop mechanisms to 
discriminate between positive and negative influences we introduced poisonous food sources. In the set of initial 
experiments (data not shown), where the negative influence of poison was just inverse of the food value (food energy 
gain =5, poison energy loss =-5) most of the agents adopted strategy of indiscriminately eating everything. Instead of 
spending valuable resources on developing new perceptive ability, they adapted by slightly increasing average 
movement so they can reach more food (and poison) sources. However, things became significantly different when we 
set the energy loss caused by poison to be 5 times higher than the value of food energy gain (food energy gain =5, 
poison energy loss =-25). In that case agents readily adopt new strategy of recognizing both food and poison and in fact 
they became much more efficient compared to agents that live in the environment without harmful influences (Figure 
7). Their average life span reached 200 time steps, double compared to life span of agents who lived in the “ideal” 
environment. Comparison of distribution histograms under the added noise (Figure 5) for no-poison and poison 
scenarios show that in the later case distribution of the effect of noise on survival span is much broader. In other words, 
it seems that our results indicate that under the more complex environment (noisy, with presence of both poisonous and 
beneficial resources) expected evolutionary success rate, measured as an average life span, increases. However to make 
such conclusion we would need to run a series of additional tests which would fall outside of the scope of this paper. 
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Figure 6. Cross section profiles of average life duration surfaces for trained neural network model. Scenarios are: a) 
Environment without poison, agents can sense food. b) Environment without poison, agents cannot sense food. c) 

Environment with poison, agents cannot sense it. d) Environment with poison, agents can sense it. For each scenario, 
black line represents cross-section profile of average life duration response surface of trained neural network model. 

Value of cross-section is indicated by red lines. For all scenarios, vertical cross-sections are set to be the median value 
of variables, so for both move speed and sense range are 14.5. Horizontal cross-section is then just coresponding value 

of average life duration for the fixed vertical cross-section. 

 

To analyze the relative importance of the agent's sense range and move speed on their survival in this scenario, 
we compare slopes of predicted responses of trained neural network models for different scenarios (Figure 6). Once the 
agents are faced with the environment with both beneficial and harmful influences (Figures 6c and 6d) the relative 
importance of spatial range of sensing environment increases but the ability to move fast still remains the main factor in 
extending survival. 

 

 

 

Figure 7. Average life duration of agents in different environments as a function of different ranges of sense. 

 

 

5. CONCLUSIONS 

 

We demonstrated that in the simplest evolutionary game, embodied agents can discover subjectively “correct” 
way of sensing and acting within the given environment through random search. As expected they are by far more 
successful in surviving than ignorant agents. What is more interesting is that they were able to successfully discriminate 
between beneficial and harmful external objects. So, even without complex underlying structures agents were able to 
build subjective data models and use them for their own purpose. According to Nicholson [16] crucial difference 
between organisms and machines is their purposiveness. Machines operate towards an end that is external to itself so 
they are extrinsically purposive. In contrast, organisms act on their own behalf so they are intrinsically purposive. In 
organisms purpose arrives from within and serves no purpose other than toward organism's survival. In our model we 
demonstrated that even in the very basic setting of embodied agents, they can develop functional structures in the form 
of subjectively appropriate data models. By developing such structures agents created their own bottom-up purpose and 
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maintain it by analyzing environment and acting upon it by using subjectively purposeful data structures. Because the 
sensorimotor contingencies within different sensory domains (vision, audition, smell, etc.) are subject to different 
(in)variance properties, the structure of the rules that govern perception in these different modalities is expected to be 
different in each modality [8]. Therefore we cannot directly extrapolate our findings to other modes of perceiving 
environment, but we believe that our basic finding, namely that the development of subjective data models rely on a 
rather simple process of randomly pairing and testing available embodied properties also holds for other perception 
channels. 

Obvious next research step is to include direct competition and reproduction of agents. We believe that careful 
comparison of the “ideal” case (this paper) and more realistic cases will reveal much about the cost/benefit ratio of 
taking certain evolutionary paths, especially related to novelty selection. For example, to what extent agents will be able 
to reach ideal strategies under various levels of selective pressures? Also, given that functional properties of living 
organisms are often weakly coupled, one of the important yet poorly investigated questions is how various strengths of 
internal interactions influence ability of these properties to evolve? On top of that: how introduction of functionally 
novel structures change configuration of existing evolutionary constraints? 

Finally, immediate potential application of the approach tested here could be in designing (semi)autonomous 
agents that should operate in a highly complex and not properly mapped environment. For example, a significant 
obstacle in creating efficient drug delivery systems (DDS) is existence of a number of complex biological barriers in 
human organism. A real challenge is to design DDS optimized for penetrating those barriers. This issue became even 
more prominent with the recent development in nanomedicine where nanoparticles have the potential to modulate both 
the pharmacokinetic and pharmacodynamic profiles of drugs, thereby changing their therapeutic index [17]. However, 
despite potentially high benefits, state-of-the art of nanoparticle-based treatments have shown rather low efficacy, with 
the delivery rate to targeted sites of only 0.7% of the total injected dose [18]. Potentially promising strategy for dealing 
with such problem could be to first model possible chemical and physical properties of nanoparticles as embodied 
parameters of agents and then let those agents to freely test individual strategies within the boundaries of embodiment, 
as in this paper, until they reach the desired location and deliver drugs there. Profile of the “winning” agents in 
simulations could then be used as a template for the synthesis and later in vitro / in vivo testing. 
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